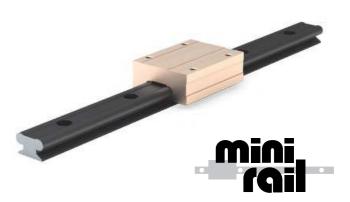
Mini Rail

PRODUCT OVERVIEW

An economical alternative to conventional miniature linear guides, Mini Rail requires little maintenance, is dimensionally interchangeable with industry standard sizes and is maintained in stock for quick delivery.

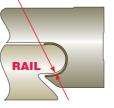
Mini Rail miniature linear guides are available in lengths up to 3600mm, meaning no cumbersome butt joints. These guides are precision manufactured out of lightweight aluminum alloys to ensure long life and corrosion resistance.

- Ceramic coated aluminum rail and anodized aluminum carriage
- Self-lubricating FrelonGOLD® Liner
- Compact design leaves a small footprint .
- Corrosion resistance makes Mini Rail ideal in harsh environment
- No rolling elements eliminates possibility . of catastrophic failure
- Withstands vibration and shock
- Available in five sizes: 7, 9, 12, 15, and 20 mm

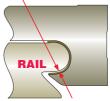

CARRIAGE CONFIGURATIONS

Precision Series: Ceramic coated rails and anodized carriages are corrosion resistant. FrelonGOLD self-lubricating liner delivers the best overall performance, the highest loads, the best wear life, and speeds. Most precise running clearance for high precision applications.

Compensated Series: Same as Precision Series except with additional clearance provided to tolerate misalignment.


APPLICATIONS

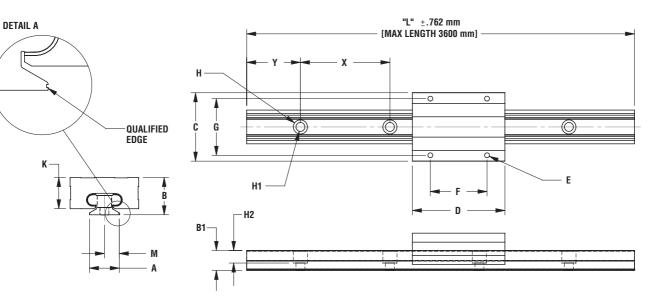
- Medical Precision
- Mobile Home Components
- Packaging
- Food Processing .
- Product Movement
- Automation
- Semi-conductor .
- Printing •
- Electronics


Precision Series .025 - .051 mm **Running Clearance** (CERAMIC COATED)

.064 - .089 mm Running Clearance (CERAMIC COATED)

Compensated

Components



Components

DIMENSIONS

Mini Rail

Download CAD

Maximum Length: 3600 mm Materials: 6061-T6 aluminum rail and carriage, FrelonGOLD® Max V: 300 sfm for FrelonGOLD (1.524 m/s) Max P: 3000 psi for FrelonGOLD (20.68 N/mm²)

		A	В	B1	C	D	E	-	F	G	H	H ₁	H ₂	К	M	Y	X		
PART NUMBER	RUNNING Clearance	BASE WIDTH MM	OVERALL HEIGHT	RAIL HEIGHT		CARRIAGE Length	CARRIAGE MTG. HOLE SIZE	CARRIAGE MTG. HOLE DEPTH	MTG.	RIAGE Hole 1. To 1. To		HOLE			RAIL MTG. HOLE TO QUALIFIED EDGE	HOLE	RAIL Hole Ctr. To Ctr.	RAIL WT. GRAM/MM	CARRIAGE WT. GRAM
MR7-XXX	.025051	7	8	6.1	17	24	M0 v 0 4		8	12	4.0	2.4	2.3	6.2	3.5	5	15	0.10	5.7
MRC7-XXX	.064089		Ö	0.1		24	M2 x 0.4		0	12	4.2	2.4	2.3	0.2	3.0	Э	15	0.10	0.7
MR9-XXX	.025051	9	10	7.1	20	30			13	15	4.5	2.6	3	8.0	4.5	7.5	20	0.16	8.5
MRC9-XXX	.064089	9	10		20	30		THRU	13	15	4.0	.0 2.0	3	0.0	4.0	1.5	20	0.10	0.0
MR12-XXX	.025051	12	13	8.0	27	34	M3 x 0.5	INNU	15	20			3.5	10.7	6	10	25	0.22	20.0
MRC12-XXX	.064089	12	15	0.0	21	34	IVIS X U.J		15	20	6	3.5	3.5	10.7	0	10	23	0.22	20.0
MR15-XXX	.025051	15	16	9.2	32	42			20	25	0	3.5	4.5	14.1	7.5	15	40	0.38	34.0
MRC15-XXX	.064089	10	10	J.Z	32	42			20	20		4.	4.5	14.1	1.5	13	40	0.30	34.0
MR20-XXX	.025051	20	25	13.4	46	62	M4 x 0.7	12.5	38	38	9.5	6	8.5	21.2	10	20	60	0.48	127.9
MRC20-XXX	.064089	20	20	13.4	40	02	IVI4 X U.7	12.0	30	30	9.0	0	0.5	21.2	10	20	00	0.40	127.9

Note: Cut-to-length rails are available up to 3600 mm.

Standard and cut-to-length rail ends are NOT coated. Fully coated rails are available upon request for high volume quantity requirements.

All carriage mounting holes are through tapped except MR20 12.5mm of thread.

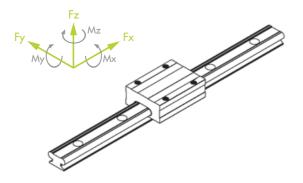
The "Y" dimension will remain constant at one end unless requested otherwise.

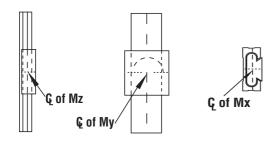
Add the overall length of the rail to the part number (EX:"MR12-0220" for a Precision Series assembly with a 220mm rail).

Mini Rail

STATIC LOAD DATA

The numbers below are for rails in a static condition. Refer to the calculations below to establish dynamic parameters.


SIZE	MSL N*	MY N-M	MX N-M	MZ N-M		
7	734	2.3	1.8	1.8		
9	1557	5.0	3.2	3.2		
12	1957	9.0	5.6	5.6		
15	3114	15.1	9.0	9.0		
20	6005	24.9	14.7	14.7		


*Max static load in Newtons.

LOAD/MOMENT CONVERSION

 $N = 4.45 \times (lbs.)$

N-m = 0.113 x (in.-lbs.)

Components

PERFORMANCE RATINGS FOR LINEAR MOTION

Plain bearings are rated by their limiting PV, which is a combination of load over a given surface area and the velocity.

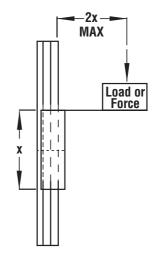
BEARING MATERIAL	MAX. PV	MAX. P	MAX. V No lubrication
FrelonGOLD®	20,000 (psi x ft./min.)	3000 psi	300 sfm
	or	or	or
	0.7 N/mm ² x m/s	20.68 N/mm ²	1.524 m/s

PV = The performance measurement of plain bearings.

PV = P x V, where P = pressure (load) in psi (kgf/cm2)

V = velocity (speed) in sfm (m/min.)

PV Example:

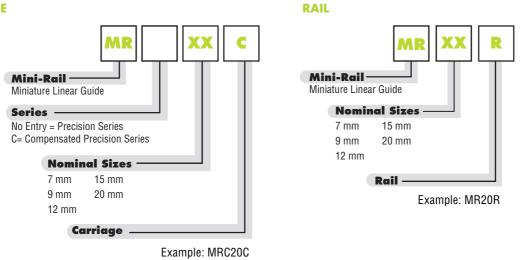

Load = 85 psi Speed = 180 ft./min. PV = 85 x 180 = 15,300 PV

Note: All three parameters must be met by an application for the bearing to perform properly. $% \label{eq:constraint}$

Note: FrelonGOLD[®] bearing material coefficient of friction is 0.125.

CANTILEVERED LOADS

Binding of the carriage will occur if the 2:1 ratio for cantilevered loads and drive forces is exceeded. This principle is not load or force dependent. It is a product of the coefficient of frictions associated with plain bearings. Contact factory or website for additional information.



Components

Mini Rail

ORDERING INFORMATION

CARRIAGE

Note: Mini Rail carriages are matched to the rails at the time of the order. Adding carriages at a later date may result in an unsatisfactory fit between carriage and rail